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/\ Ahstract

This work is concerned with generalized convex programming problems,
where the objective and also the constraints belong to a certain class of convex
functions. It examines the relationship of two conditions for generalized convex
programming—self-concordance and a relative Lipschitz condition—and gives
an outline for a short and simple analysis of an interior-point method for gen-
eralized convex programming. It generalizes ellipsoidal approximations for the
feasible set, and in the special case of a nondegenerate linear program it es-
tablishes a uniform bound on the condition number of the matrices occurring
when the iterates remain near the path of centers. (———
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INTRODUCTION

In carlier papers, Jarre [4, 5], Mehrotra and Sun [9], and Nesterov and Nemirovsky
[11, 12] tried to find a rather general class of convex programs that can be solved
by interior-point methods. These authors use logarithmic barrier functions in their
algorithms. Jarre and Mehrotra and Sun have imposed certain conditions on the
constraint functions f;, while Nesterov and Nemirovsky require the barrier function
to be self-concordant. In all cases the conditions guarantece that Newton’s method
for minimizing the barrier function converges with a fixed rate of convergence.
When summarizing and relating some of the above results here, we attach great
importance to the underlying geometry and structure of the method. To date, a
large variety of interior-point methods and search directions have heen suggested, all
of which follow the same two components: centering and/or progress in the objective
function. For the sake of clarity, only the method of centers is examined in detail to
illustrate the geometry that is shared by all these methods and to form a foundation
on which any of these methods can easily be analyzed. A short outline of how te
derive a practical algorithm from the results presented here is given in Section 2.7.
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1. PROBLEM AND CONDITIONS

The problem under study is to find
A* := min{fo(z) |z € P },

where
P:={zeR"| fi(z) <0 for 1<i<m}, (1.0)

and the f; € C?(P) are convex functions that fulfill certain conditions specified in
Subsection 1.2. The first and second derivatives of f;(z) will sometimes be referred
to as a row vector D f;(z) and a square matrix D?f;(z), and sometimes as a linear
form D f;(z)[.] and a symmetric bilinear form D?f;(z)[.,.].

For the szke cf sumplicity we assume that the interior of the feasible set P is
nonempty and bounded. Given a point y in the intersection of the domains of the
functions f;, one can use a phase 1 algorithm as in the appendix of [3] to gvarantee
this assumption.

1.1. Possible Conditions on the f;
1.1.1. Self-concordance

The most general condition is given in Nesterov and Nemirowsky [11], requiring that
the barrier functions ¢;(z) := —In(- fi(z)) are a-self-concordant on the interior
P° of Pfor1 < i< m. Likewise, for A > A*, the function @o(z,A) := —In(A - fo(z))
is required to be self-concordant on P°.

Definition (self-concordance)

Here, in slight variation to the definition of [12], a function ¢ : P° — IR is called
self-concordant on P° with parameter « (in signs: ¢ € S,(P°)) if ¢ is three times
continuously differentiable in P° and if for all z € P° and all h € IR™ the following
inequality holds:

|D3p(z)[h, b, h]| < 2v/a(D?e(z)[h, h))*2, (1.1)

Intuitively, large values of a imply that the third derivative may be large, i.e. that
@ cannot be well approximated by a quadratic function. Clearly, linear or convex
quadratic functions fulfill (1.1) with a parameter a = 0 on IR". However, we note
that condition (1.1) is not applied to the constraint functions f; themselves, but to
the associated barrier functions ¢; (which are not linear or quadratic, even if the f;
are so).

For the sum ¢(z) = Y72, ¢i(z), the following property is also required in {12}.

Definition (strong self-concordance)

A function ¢ : P° — IR is called strongly a-self-concordant (in signs: ¢ € ST (P°))
if it is a-self-concordant and if the level sets {z € P°|p(z) < t} are closed in IR™ for
all1¢ IR

intuitively this means that ¢(z) goes to infinity as z approaches the boundary




of P°, a condition that is naturally fulfilled if the function ¢ is a penalty function
defined as above, but may not hold for a general self-concordant function.

Remark 1 (Proposition 1.1 in [12])

The concept of self-concordance is affinely invariant in the following sense. If A is
an invertible affine mapping, A : R® — IR", and ¢ is an a-self-concordant function,
i.e. @ € §4(P°), then the function ¢ defined by @4(z) := w(A~'z) is again a-self-
concordant, @ € So(AP°).

Further the following simple rule for addition and scaling of self-concordant
functions holds. If the functions ¢; are self-concordant with parameters a; on the
domains P? for ¢ = 1,2 and if r; are positive real numbers, then the function
@ 1= Ty + T2z is a-self-concordant with a = max{a;/ry,az/r2} on the domain
P°:= PPN Pg.

Proof: Straightforward. @
Note that Remark 1 also holds for the property of strong self-concordance.

1.1.2. Relative Lipschitz condition

The same motivation as above, having a function which is close to a quadratic
function, has led to the definition of the following Relative Lipschitz Condition in
Jarre [5]. (See also [2].) The functions f; (0 < i < m) are supposed to be continuous
on P and twice continuously differentiable functions on P°, with Hessian matrices
D? f; fulfilling the Relative Lipschitz Condition,

IM >0 : Yze€ R* Yy € P° Vh with ||h||g,q) < 0.5/(1 4+ M'3)

|=7(D* fy + h) = D*fi(y))2| < M|l )" D*filw)2, (1.2)
which bounds the relative change of D?f; in neighboring points y and y+ h for small
|~ll,(y)- Here, ||4l5;(y) is @ certain semi-norm that makes (1.2) affine invariant and
is specified below. Again it is obvious that linear or convex quadratic functions
fi fulfill condition (1.2) with M = 0. (This condition is applied to the constraint
functions f; directly!) The precise definition of the matrix H;(y) and the associated
semi-norm is given by

2f. Ty )
H‘.(y) o= D2(‘1n(”fi($)))lr=y= D ft(y) D f.(y)Df;(y)

- fi(y) Fy)
and ||h||§,l(y) := hT H;(y)h. The matrices H;(y) arise as the Hessians of the logarith-
mic barrier functions. As shown below, the norm given by H(y) := 37}, H(y) is

closely related tc the shape of the feasible set P, and is a very convenient measure
for analyzing Newton’s method. Clearly H;(v) is positive semidefinite, since f; is
assumed to be convex. Note that condition (1.2) requires that D?/,(y 1 h) exists
for all h with [|h|,(,) < 0.5/(1 + M3,

Remark 2

If condition (1.2) holds for the function D?f; at a poiut y € P° (i.e. fi(y) < 0) then
also fi(y + k) < 0 for all A with |Allg,) <0.5/(1+ M3,

Proof: See Appendix. §




Given a strictly feasible point y, i.e. a point y such that fi(y) < 0Oforalll <i <
m, condition (1.2) is only needed for points y + A with ||A,(y) < 0.5/(1 + M'/3)
for all1 < 1 £ m. Remark 2 guarantees that also fi(y + h) < 0 for all :. Hence
y + h € P?°, so that in fact condition (1.2) is needed only for points y,y + k € P°.

Example

The Relative Lipschitz Condition allows certain singularities on the boundary of
P, the second derivative of the function f: R — IR,  — —/z e.g. {uifilis the
condition with M = 8 on P := {z|z > 0}.

1.1.3. Relationship between the relative Lipschitz condition and self-
concordance

Loosely speaking, the Relative Lipschitz Condition is sufficient for the resulting
barrier function to be self-concordant. More precisely one can state the following.

Lemma 1
If the second derivative D?f of a convex function f fulfills the Relative Lipschitz
Condition (1.2) (for infinitesimal |[A[{) on the domain P; := {z |f(z) < 0} and if f
is three times continuously differentiable on P, then the barrier function ¢(z) :=
—In(— f(z)) is a-self-concordant on P? with the parameter a = (1 + M)2.
Proof: See Appendix. B

The converse of Lemma 1 is not true; there even exist non-convex functions
f whose barrier functions ¢(z) := ~In(-f(z)) are a-self-concordant (and hence
convex) on P} (see Subsection 2.7. “Extensions”). The idea of self-concordance
and Relative Lipschitz condition however are closely related, and as the following
two statements show, self-concordance in fact is equivalent to a modified Relative
Lipschitz condition. Lemma 2 is taken from [12].

Lemma 2 (Theorem 1.1 in [12})

Let ¢ be strongly a-self-concordant, ¢ € §F(P°), and let a strictly feasible point y €
P° be given, and h,z € IR*. Define H(y) := D?¢(y), 6 := \/RTH(y)h = ||h||g(y),
and z:=y+h.

Then the following is true: If § < 1/,/a, then

z=y+heP°
and 1
(1 ~ Vabd)||zlla) < N2llnz) < m”zllﬂm-

Proof: See Appendix.
For 6 < ﬁ; one has m <1+ 6,/aé, and thus Lemma 2 implies that

1z7(D*p(y + h) ~ D*¢(y))zl < 6v/al|hllggy)2T D2oly)z

(cf. [3] (Lemma 2.1, equivalence of the H-norms)). Hence, a self-concordant barrier
function ¢ also fulfills a Relative Lipschitz condition, where the norm of the vector




h is measured by D2p(z) directly (and not by D? -- In(~¢(z)) ). Conversely, it is
easy to show the following

Remark 3
Let the function ¢ fulfill a Relative Lipschitz condition of the following form (with
the notation of Lemma 2):

|:T(D?(z + h) - D?p(z))z| < Bllhllrz) 2" DPela)z.

Then ¢ is self-concordant with parameter a = (32/4.
Proof: See Appendix. §

1.1.4. Curvature constraint

Mehrotra and Sun [9] do not need the continuity of the second derivative of the
functions f;, but only a curvature constraint of the form

Jk>1: Vhe R"Vz,y € P: 0< s 2hTD2fi(y)h < KT D2 fi(z)h < k2RT D2 fi(y)h.

With this condition they can show the same result as Jarre and Nesterov and Ne-
mirovsky for their algorithms. However, since in the above form the curvature con-
straint excludes linear or semidefinite quadratic functions f;, as well as singularities
on the boundary of P, we will not use this condition here.

1.2. Further Assumptions

In the following we will assume that the functions ~ In(~ fi(z)) are self-concordant
with parameters ;. Note that (by Lemma 1) the logarithmic barrier-functions ¢,
of linear and convex quadratic functions f; are 1-self-concordant, and so is their
sum ¢ = Y%, o(z) (by Remark 1). Thus, the following analysis includes linearly
or quadratically constrained convex programming as a special case with a = 1.

Without loss of generality we further assume that fo is linear. (Otherwise we may
introduce an additional variable zn4), an additional constraint fm41(z,Zn41) =

 fo(z)~Tp41 < 0,and minimize zp41. Note, that for this construction the new func-

tion — In(~ fr41) must be self-concordant on the domain {(z,zn41)|z € P°, fo(z) <
Znt1). In a practical implementation such a construction may increase the condi-
tion numbers of the Hessians considered in the algorithm.)

Note that by construction the resulting function ¢(z) = i) @i(z) is strongly
self-concordant on P°.




2. PROPERTIES AND A SIMPLE METHOD

For A > A*, let P()) denote the feasible set P constrained by the additional inequal-
ity fo(z) =cTz < M
P(X) := Pn{z| fo(z) < A}.

The method outlined in this section follows a homotopy path A : o0 — A* of some
interior point z(A) in P()A). Here, z()) is chosen as the well known analytic center
of P(\) (Sonnevend [14]).

2.1. The Analytic Center

For each parameter oo > A > A* the analytic center z(A) of P(A) is defined as the
unique point z in P())° minimizing the strictly convex logarithmic barrier function’

@:
@(z,A) := —qln(A = fo(2)) - Y_In(-fi(=)) (2.1)
i=1

with some fixed ¢ € IN (the positive natural numbers) and P(A = 0o0) := P. In this
paper only the choice ¢ = m is considered; the modification to other values of g is
straightforward. The analytic center depends smoothly on all constraints, also on A,
and as the following analysis shows it can be efficiently approximated by Newton’s
method. The strict convexity of ¢ follows immediately from the boundedness of P
and the strong self-concordance of ¢ on P(A)°.

The analytic center () also maximizes the concave function of z

]1/(m+q)

¥(z,A) 1= [(A ~ fol2) T](~ fitz)) (2.2)
i=1

over P. One may interpret (2.2) as z()A) maximizing the product of the ‘distances’
to the constraints f;(z) < 0.
Proof of concavity of (2.2): see appendix. il

The analytic center z(P) of a set P (or of the set P())) is invariant under affine
transformations of P in the sense that an invertible affine transformation 4 : R —
IR™ applied to the set P, P — AP = {z|f(A~'z) < 0} also maps the analytic center
2(P) = argmax{[I%4(= (@)™ to Az(P) = argmax[[[%,(~ (A 2)]/" =
2 AP). It is also invartant under scaling of the functions f;.

The function ¢ in (2.1) is a-self-concordant on P°(}) if the functions In(— fi(z))
are a;-self concordant, and, according to remark 1, a = ma.x{é, a;, 1<i<m}. Hence,
for linear or quadratic f; we have a = 1 (by Lemma 1).

"The function ¢(z,)) in (2.1) defines the analytic center of P(A). For brevity we will also
sometimes deal with the function ¢ = — “"_'__l In(— f,(z)) defining the analytic center of P. Similarly
with H(z) := D*p(z) and H(z,A) := D*p(z,)). Results for ¢(z) and H(z) are applied later to
¢(z,A) and H(z, ).




2.2, Ellipsoidal Approximations of P

If the feasible set P is bounded, then the semi-norm in Lemma 2 is in fact a norm
that is closely related to the geometrical shape of P. Lemma 2 already stated an
inner ellipsiodal approximation of P; for any point £ € P° the point z + h € P° if
h belongs to the ellipsoid defined by

hll ey < 1/ Ve

where H(z) = D%p(z). Furthermore one can show the following outer ellipsoidal
approximation of P centered at its analytic center.

Lemma 3 (cf. [5] Corollary 2.15)
Let Z be the analytic center of P and h € IR™ be arbitrary with

Whllerz) > 16vam.

Then Z + h € P. Proof: See Appendix. 1

This two-sided ellipsoidal approximation of the feasible set P around its analytic
center has been shown in [14] for the linear case and in [15, 3] for quadratic f; (see
also [5]). It relates the matrix H to the shape of the set P. In the next subsection we
will show that the underlying norm .||y is also suitable when analyzing Newton’s
method.

2.3. Newton’s Method

In the following we will give a proof of quadratic convergence of Newton’s method for
approximating the analytic center 7 of a set P and give explicit constants (depending
only on a) that describe the speed of convergence. Here all “distances” are measured
in the H-norm and related to the concordance parameter a. Lemma 4 has been
proved in modified form in [12] and states that if a Newton step for finding the
center is small, then Newton’s method converges. Conversely, Remark 4 guarantees
that if a point y is sufficiently “close” to the analytic center £ of P, then again
Newton’s method converges. Recalling some notation, the Newton step h(y) starting
at y for finding the analytic center Z is given by h(y) = —H~'(y)Dy(y)T, with
H(y) = D*¢(y).

Lemma 4 ([12], Theorem 1.3; quadratic convergence with constant 1¢,/a)

Let ¢ be a strongly a-self-concordant function defined on a nonempty bounded set
P°. For a point y € P° define H(y) := D*¢(y), g(¥):= Dp(y)T. Let h:= h(y) =
—H(y) 'g(y) be the Newton step starting at y for finding the analytic center Z of
P, let | be the following Newton step starting at y + h, and define the lengths of
the Newton steps by & := ||h|[f;(,) and & = |l sy eny- I

6<.L
Ve’

7
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then y + h is feasible, y + h € P° and the length & of the following Newton step is

of order 62
é < .(__\/zl_.__62.

1 - ab)?
For § < 5&; this implies convergence of Newton’s method, and for § < ﬁ; it
implies that é < 18./as2.
Proof: See Appendix. §

The importance of this lemma is that the constant lgﬁﬁ can be explicitly stated,
depending only on a and not on the data of the functions f;.

For suitably damped Newton steps it is also shown in [12] that a fixed rate of
convergence holds for the case § > 1/4\/a.

In the following subsections the result above will be applied to the function
@(z,A) (and h(z,A), H(z,))) to analyze a “short-step” method for following the
path of centers. A “long-step” method for convex constraint functions whose Hes-
sians fulfill the Relative Lipschitz condition is analyzed in [2].

Remark 4
In the notation of the previous lemma, the frllowing statement holds: If the length
6 = ||h]lg(y) of the Newton step h starting at y for finding the analytic center z
of P fulfills § < ﬁa, then the “distance” from y + h to Z is of the order §%; more
precisely. ||y + & — z"“[{(y) < %ﬁ§2.
Proof: See Appendix. 1

These properties show that the length of the Newton step (in the H-norm) is a
measure for the closeness to the center that can be used to analyze a method. In
this context let us state two further remarks that are not needed for the analysis
here but may be interesting for step-length coatrol in a numerical implementation.

Remark 5

The H-norm of the Newton step A(y) starting at a point y € P° for finding the
center Z of P is uniformly bounded for any y € P° by ||h(y)||Hy) < vm. This
bound does not depend on a. A similar observation is made in Proposition 3.5 in
[12]. There are examples where ||h(y)|| (y) € O(/m); see e.g. [13].

Proof: See Appendix. 1§

Remark 6

Let some € with 0 < » < % be given. If a point y satisfies ||y — z|{11(z) < 7‘; then
y lies in the domain of quadratic convergence of Newton’s method and the Newton
successor y' = y — H(y)~'h(y) satisfies

I = allage € = —
@ = Va(-ep

This is particularly interesting, since by Lemma 3 the whole set P is contained in a
fixed “multiple” of this domain, namely P C {y| ||y - Z||y(z) < 16m/a}.
Proof: Sce Appendix. 8§




2.4. Short-Step Algorithm

Below, a short step algorithm is stated. This algorithm is too slow for a practical
implementation. Its rate of convergence however ensures polynomiality in the ~ise
of a linear program (since the exact solution can be rounded from a sufficiently
accurate approximation [1]). Further, the same rate of convergence can be guar-
anteed for a convex program with constraints whose logarithmic barrier functions
are strongly self-concordant. Possible acceleration techniques for the algorithm that
are based on the theoretical results developed here are outlined in Subsection 2.7.
Implementations are discussed e.g. in (6, 8, 10, 2].

Under the assumptions of Sections 1 and 1.2 let a point yg € P° and some
numiber Ap > A* be given such that the first Newton step A{ye, o) < 1//./a).
Simple modifications of the algorithm .o generate such a point yo and Ap are omitted
here (soe e.g. [3]). Again, the objective function fy(z) is denoted by ¢lr.

Algorithm
1. k:=0:0:=1/(8/my/a): ¢ = desired accuracy.
2. ykay = Yk + he where g i= hikg k) = = D2o(yr, M)~ Di(ur, k)
30 A — chH,; < %( stop.
4o A 1= Ak — 0k — T yrgr)-

5 k:=k+1igotol.

2.5. Convergence Analysis

In order to ¢ sure convergence? of the algorithm the following two properties are
shown.
First, after the update of A4 in step 4. the iterate yr41 again satisfies

MUkt Akl H (e Aegy) < 1/(AV@). (2.3)

This guarantees that the iterates remain feasible and close to the center.

Second,

17 . .
Me = eTyeqr > ﬁ(cryk-H =A%), (2.1)

so, that the stopping criterion in step 3 is exact, and the gap Ax — A* in between
the upper bound A for ¢”yx and the (unknown) optimal value A" is reduce? by a
factor of at least 0.40 in step 4.
Proof: See Appendix. @

This completes the proof of convergence!

20nly feasibility and convergence of the objective function value 7y to the optimal value are
ensured.




2.6. Bounded Condition Numbers

Implementations of the affine scaling algorithm for solving linear programs encouncer
nearly singular Hessians if large step-lengtiis are chosen such thet the iterates lie
very near to the boundary of P. The following lemma shows that for nondegener«te
linear programs this diffi_ulty can be partly eliminated if the iterates remain in a
neighborhood of the path of centers. Implementaticus in [6, 10, 8] show that with
extrapolation techniques it is possible to gererate fast algorithms that remain in
such a neighborhood.

Lemma 5 (Estimate of worst-case condit'on numbers for the matrices H(y) for
nondegenerate linear problems)

Consider a (primal) nondegenerate linear program and any »lgorithm generating a
sequence of points yg in a o-neighborhood of the path of centers with o = -4715.
Here a point y is in the o-neighborhood of the path of centers if the Newton step h
starting at y for finding the “nearest” center measured in the H-norm is less than
o,i.e.,

A= argmin 1Do(y, M ey, 01
defines the “nearest”™ center z(A) to y, and the corresponding Newtcn step
b= h(y, ) = - D%e(y, N Do(y, M)

satisfies ||h|| g(y,») < 0. Then there exists an € > 0 depending on the geometry ol the
problem such that the condition numbers of the Hessians are uniformly bounded:
condo( H(yk)) £ 1/efor all k > 0.

To prove this lemma we first define a condition number f.. . bounded convex
set M (the “flatness” of the set M). Using the two-sided ellipsoidal 1pproximation
of the set P(A) (by the matrix H(z()))) we then obtain a bound on the condition
number of H(z) for z near the path of centers. The proof is given in the Appendix.
]

Note: The bound 1/¢ on the condition numbers in the preceding Lemma de-
pends on the geometry of the problem (on the “flatiess” of the sets [”(A}), and
unfortunately, as simple examples show, the magnitude of the bound of the condi-
tion numbers may be as bad as order 2L, where L is the length of the input of the
problem.

There are nondegenerate examples with nonlinear (e.g. convex quadratic) con-
straint functions for which no such bound exists.

2.7. Extensions

Nesterov and Nemirovsky [12] present an extension of the method presented above
handles certain non-convex functions f; whose level sets f,(z) < 0 describe convex
domains; for example, the function f : R™*! — IR defined by f(z,t) := ||z||3 — 12
forz € R", t € R and t > ||z||3.

They consider the case that the functions f; are not necessarily convex, but
their barrier functions —In(— f;(z)) are self-concordant {(and hence convex) with

10




the additional property that there exists a ¥ < oo such that the Newton step h
starting at a point y € P? for finding the center Z of P nas a length [[h|lfy) < ¥
uniformly bounded for all y € P°. Some of the results presented above—like the
outer ellipsoidal approxit. tion of P or equation (2.4)—no longer hold, but the
convergence of Newton’s method for finding the center is the same and convergence
of a modified barrier method can be maintained as well.

Another modification of the method is an acceleration when fo'iowing the smooth
path of analytic centers z(A) for A > A*. The tangent to this path can be computed
(as H(y) 'c) and used as a predictor for a next iterate down the path of centers,
while only one or two steps of Newton’s method (with line search) will serve as a
corrector. Finding the righv compromise of staying close enough to the central curve
on the one hand and taking large steps along the tangent on the other hand, along
with efficicnt tactorizations (or preconditioners) of the matrices H(y) are crucial for
a practical program. Implementations of such predictor-corrector type approaches
are promising; see e.g. (6, 8, 7. 10].

2.8. Concluding Remarks

There are some difficultics when trying to deduce statements about polynomiality
from the above method.

2.8.1. Irravional solutions

The r/NP- model for classifying the “difficulty” of classes of problems is unsatisfac-
tory if one considers interic,-point methods that give exactly the same (theoretical)
rate ~f convergence for linear and quadratically constrained convex problems For
linear problems this rate of convergence implies polynomiality of the class of lin-
ear programming problems, since one can round the exact (rational) solution from
a sufficiently accurate approximation in polynomial time. For the class of convex
quadratic problems, no statement about polynomiality can be deduced from this
convergence (since a quadratic problem may have an irrational optimal solution
that to date cannot be computed by rounding techniques). It is appropriate there-
fore in a more general context to define the notion of generalized polynomiality for a
class K of problems if one is able to compute the exact solution of any problem in
K up to d digits accuracy in a time that is bounded by a polynomial in d multiplied
by a potynomial in the !engtlh of the data of the problem.

Tue definition of generalized polynomiality extends the notion of polynomial-time
algorithms in a natural way to problems that do not necessarily have a rational
sol'ttion. So far such problems have escaped any classification, since the exact so-
lution often could not be computed at all, even if there was a good algorithm to
approximate it.

Clearly any problem that is polynomial is also generalized polynomial, and vice
versa: a generalized polyromial problem that has a unique ratinal solution whose
length is bounded by a polyromial in the leugih of the data is also polynomial in
the classical sense.

11




2.8.2. Non-algebraic functions

Concerning the class of a-self-concordant problems, one further difficulty in extend-
ing the model of polynomiality is that the “length” of the input cannot be measured
in a natural way if the input includes non-algebraic functions.
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3. APPENDIX

The Appendix is divided into two subsections. In Subsection 3.1 we state some
useful and general results. In Subsection 3.2 we present the proofs to which we
referred to in Sections 1 and 2.

3.1. Some Useful Lemmas

We begin in recalling a slightly generalized version of the well known Cauchy-
Schwarz inequality.

Generalized Cauchy-Schwarz inequality:
If A, M are symmetric matrices with |z7Mz| < 2T Az Vz € IR, then also

(aTMb)2 < aT4a 6TAb Va,b e R". (3.1)

Proof: Without loss of generality assume that A is positive definite. (Else A :=
A + el is positive definite Ve > 0, take the limit as ¢ — 0 for fixed a,b.) Assume

further that a,b # 0 and set p := {‘/%—f-%, then it follows from
a"Mb = }({a+b)TM(a+b) - (a ~ b)T M(a — b)) that

(aT Mb)? < Tlé((a +6)TM(a+b) - (a-5)TM(a-b))?

< -11—6((a + 8T A(a+ )+ (a - 5)T A(a - b))®

= -1%(2aTAa + 25T Ab)? = %(aTAa + 6T Ab)2.

When replacing a by a/u, and b by ub this implies
(aTMB? = (M) < (30T A+ 26T A0

= (aT Aa)(b7 Ab). ]
The following estimate about the spectral radius for symmetric trilinear forms

was observed (without proof) by [12].

Spectral radius for symmetric trilinear forms:
If M € IR®™™™ ™ represents a symmetric trilinear form M : R" x R" x R" — IR
and A € IR"*™ a symmetric bilinear form, and u > 0 is a scalar such that

M[h,h,h)% < pA[h,h)® Vh e R®,

then also
M(z,y,2}* < pAlz,z)Aly, y)Alz,2] Vz,y,2z € R". (3:2)

Proof: For z € IR™ denote by M, the (symmetric) matrix defined by yTM,;z =
M.y, 2] := M(z,y,2] Vy,z € IR". Without loss of generality let i = 1 (else substi-
tute A by JjiA). As in the proof of (3.1) assume again that A is positive definite.
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By substituting M[z,y,z] := M[A~Y/2z,A-Y/2y A~1/22] one can further assume
that A = I is the identity. Finally, it is sufficient to show that

|M{z, b, )| < llzll2llRll Vz,h € R"

holds, provided that M[h,h,h)? < ||h||§ Vh € IR™ is true. (The remaining part
follows by applying the generalized Cauchy-Schwarz inequality (3.1) for fixed z to
M.!) Let

p:= max{M|z,h,h] | s.t.||z]l2 = ||hll2 = 1}

and let %,k be the (not necessarily unique) corresponding arguments. The necessary
conditions for a maximum (or a minimum if M[%,h ,h] is negative) imply that

() =2(%) o)

where 8 and p are the Lagrange multiplyers. From this we deduce that § = u/2
and p = g (by multiplying from left with (£7,A7)) and therefore

Mj(% + k) = p(z + h),

which also shows that M([h, )} = p. Starting from a maximizing triple

__th_ _Eth_
HZ+hll2 " f12+hll2

(%, h, k) this gives a way of generating an(other) maximizing triple (h Itk _Zth_ )

y b M
NIZ+RI27 [[2+h]2
Iteratmg this generating process, one obtains a sequence of maximizing triples that

converge® to a triple (v(Z+ 8h), 7(& + Bh),v(Z + Bk)). By continuity of M this triple
is also maximizing. By assumption however, M[v(Z + Bh),y(Z + Bh), (% + BR)]? <
l7(Z + BA)||®, which finishes the proof. ]

In the following a quantitative result about the relationship of condition of the
Hessian matrix of ¢ and the shape of the sets P()) is stated. For this purpose it is
useful to define a condition number for the sets P(A).

Definition
Let M be a bounded convex set in IR™ that contains at least two points, and let
M be its closure. The function ! : R" — IR defined by I(y) := max{y’(a -
b)/lyllz | a,b € M} measures the length of M in direction y. The condition number
condz(M) € [1,00] is then defined by
. rma

rmaz := max{l(y) | [|yll2 = 1}, min == min{i(y) | [lyll2 = 1}, condy(M) := ==
min
and is a measure for the “flatness” of M. If M has an interior point, then its
condition is finite.

3The establishment of convergence is straightforward. Assume i- Th =6 > 0 (else replace h by
—h). Define 2" = £, 2 = h and 2t = (20 4 =Dy (0 4 K- ’))"2 We show that
2™ converges to v(Z + 8h). Writing z**) as vu(Z + Bxk) it follows by induction that 8« > 0 and

vk € [4,1] (since 8 > 0!). Computing B4z == Bes1 + (Bx = Bre1 )55 shows that i is a linearly

converging sequence. Hence, yx converges also. [ |
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(Note that rpmsr = max{|la — blj2 | a,b € M} and rpin = min{||yll2 | e+ y &
M°Yae M}.)

Proposition
Let M C IR™ be convex, Z € M, H € IR"*" be positive definite and v € IR be such
that

i+ he M whenever [|hlly <1 and T+ h ¢ M whenever |||y > 7.

:];COIldg(M) < y/condy(H) < ycondz(M).

Proof: Denote by v; < v3... < v, the eigenvalues of H. For positive definite
H the condition cond,( H) is given by ‘f}l‘ Using the definition of ez and 7min and
the ellipsoidal approximation of M it is straightforward to show that

Then

\/IZ S Tmin S \/—;—; and 7 S Tmaz S ._ZI
From this the claim follows. .

3.2. Proofs from Chapters 1 and 2
3.2.1. Proof of remark 2

Let the function f fulfill the Relative Lipschitz Condition (1.2) in y and let f(y) < 0.
Considering the Lagrange remainder formula for the function g : R — R, g(f) :=
f(y + 6h) we obtain for ||hl|n() < 0.5/(1 + M/3) that

f(y+ ) = f(g) + DIw)h + 5hT DA S(y + uh)h

with p € (0,1).
Suppose now that f(y + h) > 0, then we have

0< —f(3) < f(y+h) ~ S(u) = DIk + ShT D*S(y + wh)h
< Df(y)h + %hTsz(y)h(l + Mullhllgy) (Rel. Lips. Cond.)

< DJ(u)h+ AT DM + w7

From

Df(y)h\2 KTD*f(y)h _ 1
(i) * S = Whe < gy

follows further that

f) 4 MDY@ i)

PIWh < o3 M) I S AT MR
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Substituting this into the first inequality we obtain

- f(y) 1 -fly) M
20+ MPB) T2 a1t i YAy M)

0<-f(y) <

. 1 1 s__M
= f(y)(z(1 T M5 Y 30t MRy 6T+ My

) < 1),

which is a contradiction.
So f(y + k) must be negative as well. 1

3.2.2. Proof of Lemma 1

Suppose a function f is three times continuously differentiable in a point y € P° and
fulfills the Relative Lipschtiz Condition (1.2) in y. We verify the self-concordance
for an arbitrary fixed direction h € IR™. Using (1.2) one can bound the function
g:R— IR,
g(8) := D*f(y)[h, k] — D*f(y + 6h)[h, k]
by
9(O) < M|Bhl|(y) D* f(y)lh, h]

for sufficiently small 8h. The definition of ||.||7(y) allows to continue

D?f(y)[h,hj Df(y)h]
-f(y) - f(y)

D*f(y)[h, h** | D2f(y)[h, h]| D f(y)[A]|
oy e T R (33
(Using that /a + vb > va + b for a,b > 0.) Since ¢'(8) = —=D*f(y + 6h)[h, h,h] it

follows

?)"* D (g, A

19(6)] < Mi6|( +(

9(0) = g(0) + 8¢'(u8) = —6D*f(y + uoh)[h, h, h]
for some pu € (0,1). Hence

l9(8)! = |8D°f(y + ubh)[h, b, h]|.
Sustituting this into inequality (3.3) yields

D2 f(y)[h, h}*/* D2f(y)[h»h]Df(y)[h])
(=S —-f(y) '

In the sequel it is helpful to abbreviate the quantities

4o DIGIRL o DY@RK) o DO R

—fy) " T =1y 3 —f(y)

Without loss of generality assume d; > 0 (otherwise substitute h by —h). By
convexity of f also d2 > 0. Inequality (3.4) is true for sufficiently small 8k and some

ID*f(y + pbh)[h, h, k)| < M (

(3.4)
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u = p(8) € (0,1). Deviding (3.4) by —f(y) > 0 and taking the limit § — 0 we
obtain
|da} < M(d3"* + ddy). (3:5)

Self-concordance is defined by the derivatives of p(y) := —In(— f(y)) in (1.1). Ob-
serve that

Dy(y)h] = di, D*¢(y)[h,h] = d2 +di and D3p(y)[h,h,h] = d3 + 3dad; + 247.
Using (3.5) we estimate
DP(y)lhs b, B]| < |da] + 3drds + 283 < ME/? + (M + 3)dd; + 245,

Comparing this with (D?g[h, h])*/? = (d; + d3),/d2 + d? it becomes obvious that a

suitable multiple of (D%g[k, k))*/? upper bounds |D3¢(y)[h, h, k]|, but finding the
best possible multiple is a tedious work which we would like to banish to a footnote?.
Recalling definition (1.1) we see that \/a = 1 + M gives precisely the inequality in
the footnote. |

3.2.3. Proof of Lemma 2

For the sake of completeness we state this proof which is already given in Theorem
1.1 in (12] in slightly modified form.

Let an a-self-concordant function ¢, a point y € P°, the gradient De(y) = g(y), the
Hessian matrix D2p(y) = H(y), an arbitrary vector & € R™ with § = ||hllg(y) < :71;
and an arbitrary vector z € IR™ be given.

Let s € [0,1] be such that y + sh € P°. We first show that for such s the inequality

1
(1 — sév/e)zllu(y) < Nellt(sny < m”zllum (3.6)

holds. In a second step one can then show that for s = 1 still y + sh € P°. To
evaluate how the H-norm of the vectors A and z changes for different matrices
H(y + ph), with p € [0, 3] let us define

T(p) := ||hliz1cy+pny) = BT D*(y + ph)h 2 0 and

8(p) := ||2ll}y(y1pm) = =* D?e(y + ph)z 2 0.

‘Abbreviating againa=d;, b= V/dz we obtain
2
lD’w(y)[h, h, h]l < (Mb® + Mab? + 3ab? + 2a°)?
= M2 + 2M2ab® + 6 Mab® + AMa®b® + M2a®b* + 6Ma?b* + 4Ma'd? + 92" + 12a*)® + 4a°
Using that 2ab < a? + b? we eliminate all odd powers and summarize
< 2M?b® 4+ 2M?%a?b* + 11Ma®b* + 3MD® + 6Ma'd? + 9a%b* + 12a*b? + 4a°.

3
< (44 8M + AM?)(a® + 3a*B? + 3a%b* 4 5%) = 4(1 + M)*(a® + b*)° = 4(1 + M)? (D’g:[h, h])

Summarizing and taking square roots we get |D’¢(y)[h, A, h]l < 2(1 4+ MY(D?¢(y)h, h))*2.
(Actually, even the constant 2(1 + *M ) would work.)
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In order to show (3.6) we will show that the function @ is “nearly constant”. The
changes of ' and ® can be estimated by their derivatives I''(p) and ®'(p) using the
estimate about the spectral radius for symmetric trilinear forms (3.2) proved earlier:
From the a-self-concordance of ¢ follows with (3.2) that

|D3¢(y)21, 22, 23] < 2v/@D*p(y)[z1, 21]"/2 D2p(y)[22, 22]"/* D2 p(y)| 23, 23]'/

which implies that
(o)l < 2va (kT D?p(y + ph) ) = 2/al(p)*/* and

1#(p)| < 2V/a(WT D2p(y + ph)h) " (a7 Doy + ph)z) = 2/aT(9)"/2(p).

Using the first inequality one can show that I'1/2 js “small”, and with the second
inequality this implies that |®’| is “small”. There are two cases:

1. T'(po) = 0 for some pg € [0,s]. This implies I'(p) = 0 for all p € [0, s]
(by integrating f; "°+ I'(p)dp for small |¢| and using the first inequality)
and then ®'(p) = O for all p € [0, s] and ®(s) = ®$(0) which implies that the
H-norm of z does not change at all and that (3.6) is true.

2. T(p) > 0 Vp € [0,s]. In this case one can bound I''/?(p) s follows:
£ (T(p)~1/2)| = I4T(p)*/I"(p)| < V& Vp € [0, 5] which implies that
I-12(p) > T~Y2(0) - py/a = § — py/a > 0 (by definition of &) or that
I''/2(p) < 6/(1 — péy/a). Inserting this in the second inequality one obtains

'(p)] < 26‘/;- (o).

Again one may conclude (like above) that either ®(p) = 0 on [0,s] (in which
case there is nothing to show) or ®(p) > 0 on [0,s]. If &(p) > 0 one can
estimate

(0 #(p)Y] = 5 In(@(o)) < l”ff and thus

®(s) 26\/_
[In(5))1 = I1n é(s)—lnd»<0|~|/(ln¢ p)) dp|</ Tt

=—2ln(1—p6\/_)l -2ln( 6\/_)
This implies that

®(s)\1/2 1 ®(0)\1/2 1
(Fo) T ™ Go) <Toeve

which is inequality (3.6).
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A short proof by contradiction shows that s = 1 is possible, i.e. that 1 = max{p €
[0,1] | y + ph € P°}: Suppose on the contrary that 1 > s := sup{p € [0,1] | y +
ph € P°}, then by the inequality (3.6) it holds that D%p(y + ph) is bounded for
all p € [0,s), and thus @(y + ph) is bounded for all p € [0,s). The strong self-
concordance of ¢ implies that ¢(z) goes to infinity as z approaches the boundary
of P, lim,_sp ¢(z) = o0 so that y + sh ¢ 0P, the contradiction we were looking
for. 1

3.2.4. Proof of Remark 3

Substituting z by h, the Relative Lipschitz condition reduces to
T (D*¢(z + h) - D*¢(z))h| < B(AT D2p(z)h)*/?).

Defining pu(t) := AT(D%*¢(z + th) — D%p(z))h, p'(t) = D3p(z + th)[k, h,h], one
obtains from

u(1) < B(hTD2p(z)h)3/%t for t > 0 that u'(0) < B(hT D?*p(z)h)*/2. This is exactly
the condition for a-self-concordance with 8 = 2¢/a from which the claim follows. §

3.2.5. Proof of concavity in (2.2)

The proof of concavity of ¥ given in [14] before statement (2.8) can be generalized
in a straightforward way to nonlinear convex functions f;: The term () — fo(z))?
has the same structure as the remaining m terms and is therefore omitted here for
the sake of clearity. One obtains

D¥(z) _ 1 & Dfi(z)
Vo) —Dln\I!(z)-m; )
and
D*¥(z) DT¥(z)D¥(z) _ D*fi(z) DT fi(z)Dfi(z)
‘Il(:c) — \1’2(1‘) _D2]n\1’(z) m'z—; f' z) - f,?(z)
Hence,
D*¥(z) D*f(z) DT f,(z)Df,(:r.) DT fi(z) Dfi(z)
‘I’(x) - ‘Z‘: fi(z) fHz) (E fi(z) )('_Zl fi(z) )

Note that for arbitrary vectors h and vy,...,vn € IR" we have

RT(m Y vl )b = m Y (07 R)? 2 (3 oT )2 = kT v) (32 ol DA

Taking v; := DT fi(z)/ fi(z) and observing that fi(z) < 0 and ¥(z) > 0 this implies
that D?¥(z) is negative semidefinite i.e. ¥ is concave. ]
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3.2.6. Proof of Lemma 3

This proof proceeds in two steps. First we show that the function ¢ is well approxi-
mated by its quadratic Taylor approximation ¢. In the second step this information
is used to relate the (ellipsoidal) level sets of ¢ to the level sets of ¥ = e=¥/™,

Let y € P° be arbitrary and define the quadratic approximation ¢, of ¢ in y by

0(2) = ¢(v) + Doly)z ~ ¥) + (2 — 1) D2p(u)z - ).

For h € IR" and sufficiently small p (such that ||uh||y(,) < 1//a) define the differ-
ence of ¢ and gy in the point y + ph by

d(u) := qy(y + nh) — o(y + ph).
The Lagrange remainder formula applied to d yields
d(p) = d"'(uu) with some v € (0,1).

Using the definition of self-concordance one obtains

d3<p(y+ph;

(1) = =gz = DPply + uh)lh, hoh] < 2/ DPply + ph)lh, /2.

For ||uhllp(y) < 7‘; this can further be bounded by Lemma 2:

D? )k, h]'x/z (Dz (y)[h. h 1 )3/2
Ay + uh)| A e ?)

Inserting the last two estimates in the above Lagrange remainder formula allows us
to continue

1 )3/2 p3 “h“H(y)
= Vallvphllng,))? *3 (U= Valluhllng) P

for ||luhllg(y) < 1/v/a. This completes the first step of the proof.

The last inequality will now be used to obtain information about the increase of
- and thus also about the decrease of ¥ (defined in (2.2)) - around its maximum &
(the analytic center of P). This allows to construct a decreasing linear function on
the ray Z + ph, # > 0 that bounds the concave function ¥ in u € [1,00) from above.
Here, for h € R™ we define h := h/( (4v/a|lh||y1(y)). The estimate of d for h = h now
implies that

3
dw) < S2v/a( D%e(u)ih, A v

V@ Rl 161AI,)
3 (1-1/43 = 81

Since gz(2 + h) = o(2) + §[|A|l}; ;) it follows that

d(1) <

“ ”]l(y)

. ) 1 - i 3 ..
p(z+h) 2> p(z)+ 5"’1”31(:) > (L) + 'ﬁ””‘”fi(ﬂ‘
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Using this and the definition of ¥ yields

A2+ h)) i <P( )
m

¥z +h) = exp(- 22 exp( =l ey)

= ‘I’(-’C)GXP('—‘“ r(zy)-
IR
Let z := M,:-L’l < 1%- Since exp(t) < 1+t + 3¢2 for ¢t < 0 one can conclude that
J 3 9 z
exp(—-—z) <1- 1o° + %622 <1- e

which implies that ,
Y(z+h)< ¥(Z)(1- Z)

Setting ¥(z) := —oo for z ¢ P, ¥ is well defined and concave everywhere in IR™.
Now let h be such that ||hllyz) > 16m\/a = 3||A||f(z), then we have ¥(Z + k) < 0,
ie. 2+ h & P (since ¥(z) > 0 for z € P). a

3.2.7. Proof of Lemma 4

(Simplified version of the proof in {12], Prop. 1.2, Th. 1.2, 1.3 and 1.4)
Define y(s) := y + sh for s € [0,1] where h = —D%p(y)Dy(y)7T is the Newton step
starting in y to minimize ¢, then by Lemma 2: y(s) € P° for all s € [0,1] and

T, 2 "2 1 T2
|27 (D%p(y) — D p(y(s)))2| < ((1 = al P 1)z" D*e(y)z.

Using the generalized Cauchy-Schwarz inequality (3.1) and defining p := Va|lkl| g,

we obtain

liDcp(y(s))z — KT D?(y)2] = KT (D?¢(y(s)) - D2o(y))z] <

((1 s#)z 1)\/zTDz‘¢9(y)z\/;;TD2‘P(y)h—((1 1)||z||,,(y)\/_

The left hand side is the absolute value of the derivative n’(s) where & is defined
K(s) := Dp(y(s))z—(1-38)Dp(y)z. By integration, (x(0) = 0)! one can thus bound

lzllgy 2 1 _Nallng) s2p?
|k(s)l < Vo u/ T ~1dt= ———lﬁ oo

For s = 1, y(s) = y + h this implies

(01 = 1Dty + bz < g2 L,

Choosing z = h = —=D%p(y + h)"'De(y + h)T as the next Newton step one obtains
@

Al gy) <K WAl by m)

N2 - hl <
WhllEr(y+ny = [Dly + R)A| < 1-p Ja ~(1-p?2 o

the last inequality following from Lemma 2. With § := p/\/a the claim foliows
when deviding the last line by [|A{|y(y+n)- ]

21




3.2.8. Proof of Remark 4

The previous Lemma implies that if § = ég < -97‘; and Newton’s method starting in
yo := y is iterated one obtains a sequence of strictly feasible points yx = yx—1 + hi—1
for k > 1 where the norms ||.||f(y,) of the Newton steps hy converge to zero. Defining

6k := |[hillz(y,) and 7 := 9@4@ it follows (again from Lemma 4) that
1
b < 78E1 < ~(vbo)™.

Here, the norm &g of the first Newton step hg is 8o = ||hol|f(yo) < ﬁ;. By Lemma
2 this implies for any z € IR™ that

1 9
|y < mlIZIIH(yo) < gl

Since §; is a decreasing sequence, this relative change in two subsequent norms is
always bounded by 2 so that

1 1,38 ol 1 242 3
hellgwo) € = (5 7250)’c (215)" and Y |lhkllp(y) € =285 < 5\/553-
Y Y — Y1 - 315

Since limi—co ¥k Rkl H(yo) = 0 also y — Z and the claim follows. [ |

3.2.9. Proof of Remark 5

(i) First let f be a convex C?-function, for f(z) < 0 be ¢(z) := —In(—f(z))
its logarithmic barrier function, g(z) := Dg(z)T = 21}(5#- the gradient of ¢ and

H(z,€):= H(z)+el = D*p(z)+el = %ﬂ+ﬁf&?+d a perturbed Hessian

matrix of ¢. Then H(z,¢) is positive definite for all ¢ > 0 and

Df(z) Df(z)TDf(z) | D*f(z) . ~-1Df(a)
le@ -0 = =0 (T * =) T ey

To simplify let v := Q_l](—)— and G := —j'%(—)l + €I, then G is positive definite and

G lovTG!?

14 vTG“v)v <l

No(@) -1 (z) = © TG+ vl )y o=0T(G7! -
(Note again the equality ||g||%-; = gTH'g = ATHh = ||h||} for h = H™g.)

(ii) The second part of the proof now follows immediately (taking the limit as
¢ — 0) from another “Cauchy-Schwarz-type” inequality stated in Proposition 3.5 of
[12] without further comment (or proof).

If Hg,”H_, = u; for 1 < i < m (with positive definite matrices H;)

then || th” tH) S 2 i
Proof: bserve that

pi = min{g > 0| (¢7h)? < uhTH;h Vh € IR™}. We want to show that
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fi=min{p > 0| (T gN)h)? < uhT (T H)h Yh € R} fulfills i < ¥ p;. We may
also write

fi=min{p >0 | (T gTh)? < uY hTH:hVh: (gTh)? < pu:hT H;h} (since the last set
of inequalities is by definition of u; always satisfied). From this definition of f it is
obvious that g > j for any j satisfying

0=sup{(d_a;)* - Y Bi|ai € R, Bi 20,0}~ puf; <0}.

(If we added the additional restriction that a; = g?h and 8; = hTH;h, then ob-
viously & = ji would be feasible, i.e. would be satisfying that the “sup”= 0. By
allowing a (possibly) larger set a;, f; here, the “sup” may increase and it might
require a larger value i > fi to ensure feasibility of ji.) For any p # 0 the sign
of the “sup” is invariant under the transformation “Vi : 8; — p?B;, a; — po;”.
Hence we may add the additional constraint Y 3; < 1 while keeping the same set of
feasible values fi and guaranteeing that on the resulting compact domain the “sup”
is actually a maximum for which we can consider the necessary conditions. For this
purpose define e := (1,1,...,1)T ¢ R™,

a:={a,aq,...,an)T € R™, & :=(0,...,0;e7)T € R?™ and

& :=(0,...,0,2a;,0,...,0;0,...,0,—p;,0,...,007 € R*™

for 1 < ¢ < m, where only the i-th and the (m + 1)-th entry of §; are nonzero. Since
Bi = 0 implies a; = 0 we may restrict ourselves to §; > 0. (And also u; > 0.) Then
the necessary conditions for a maximum imply

(2¢Ta eT; —ieT)T = poko + pré1 + .. + Pmém,

where p; € IR are the Lagrange multipliers. For i > 1 we deduce from the (m +1)-th
entry of £ that p; = &Eﬂ’-, and the i-th entry tells us then that a; = eTa-‘.ﬁ;:.
Substituting this in the “sup” yields

0= max{(;:io)z(ZHi)z o)) ‘ (E%ﬂi)z < uifi})

Substituing now (; we may continue

< max{( <o V(-2 3( b ) 4i).

B+ po B+ po

Factoring (7.“;,_%)2 > 0 it is obvious that the last term is zero for any & > 3 u, (and
in particular for g = 3 u;). |

3.2.10. Proof of Remark 6

Let again H(z) = D?p(z), g(z) = Dyp(z)T and h(z) = — H(z)~'g(z) be the Newton
step starting in z for finding the analytic center z of P. Let y € P° and € < 1 be
given such that |[Z — yly(z) < 5 and set h:= % — y.
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For some fixed vector z € IR™ define | : R — IR by I(u) := g(y + ph)7z, then
[(1) = 0 (for any z) and

() = ATH(y + ph)z, 1"(p) = D3p(y + ph)(h,h, 2],

and I(p) = I(0) + pl'(0) + p21"(€) for some £ € [0, u] by the Lagrange remainder
formaula. For u4 = 1 one obtains

_ 1 o
0=g(v)7z + ATH(y)z + 5D°0(y + ER)[A, b, 2]
From a-self-concordance follows with (3.2) that
127 (9(y) + H()R) < Va RTH(y + €Ik (2T H(y + €h)2)' /2.

~ _ -1
Let d := g(y) + H(y)h (then H(y)~'d = h(y) — h) and let z := nH(’;) ‘dllfuy) -
—1——,-(drg(:)):::)l =, then the above formula reduces to

dT H(y)~!
(dTH(y)'d) ‘/

1H () dll gy weiy
|IH(y)_ld”H(y)

7 < Vallhll g ven (3.7)

By assumption, ”h||H(y+h) 7— Relating the norms [l g, h)s H-lla(y+er) and

| |#(y) again by lemma 2 it is straightforward to show that for € < 1 inequality
(3.7) implies

1 ¢?

H(y)~'d = (dTH@Y) ') < o=
for any £ € [0,1]. )® Note that  — H(y)~'d is the result of the Newton step.
Applying Lemma 2 one more time yields

e?

which establishes quadratic convergence. ]

3.2.11. Proof of (2.3)

Suppose yj satisfies &k := [|h|lpey, 2y = [ A (g € 1/ (V) and gy =
Yk + hi. i

By Lemma 4 then é := [[A(¥es1, A (yays i) S 1/(9/«).

We examine the effect on h and H caused by the update of Ax4y. Denote by g(y. M)
the gradient

T ._ I)fl(y
9(y, )" = Ly, f\)—q(,\ pom Z--f.(z/)

*For £ = 0 or £ = 1 it follows directly from Lemma 2, for £ € (0,1) it follows when applying
Lemma 2 twice and using ¢ < 1.
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(p as defined in (2.1)) and h(yry1, Ak) = = H(Yka1, M) 7T 9(Yk4 1, M) (£ 1/(9/@)).
The update of Axy1 = Ak — 0( Ak — T yrq1) effects

oc -
941 Akar) = 9(Uka1, Ak) + o = Torn 9(Yk+1,Ae) + goé

with é = ¢/(M41 = ¢Tyr41). The H~'-norm of the second part can be bounded by
- . -1 _\M?
9 &ll i egrreen= = (9067 H(grrr, Aes1) ™ goé)

< oy (H(geer o0) + 07) '8) " < 0

(since M{yp4i,20) is positive definite).
Further, from H(yx41. Ae41) = H{Yrq1,A6) + qa2ééT follows that

Ay srs Mee O i (g dien) = B9WR+1 Mt D H (gag s Aign)

~<— ilg(yk+l’Ak)“}’(yk.fl,‘\k.‘,l)—: + “an“H(yk-}lv\k-ﬂ-l)_l

1
< ”g(yk-f-lv’\k)llll(yk+l‘,\k)—l + U\/(_i < m + 0\/‘7-

(Here, ¢ is chosen ¢ = m.) This shows (2.3) |

3.2.12. Proof of (2.4)

Denote the analytic center z(Ag) by z, then the iterate y, ., meets the assumptions
of Remark 4 so that

Nok+1 = W iuey s den S N1 MM i @iy A F T0k+1 + ACYR+1, Ak) = EllH (gryy M)
1 JVays 1 2 7
<—+ ‘/_( ) <=
9,/ 2 \9/a 54,/a
By the equivalence of the H-norms (Lemma 2) the same distance measured in the
central norm fulfills |yk41 ~ Z||r¢z,00) < Yk+1r = Zl By 00 /(1 = 373) < %;5. From
the inner ellipsoidal approximation of P()) in part 1 of Lemma 2 follows that yi4,
is at most 15 percent “away” from the center,

Ty o1 =T <0.15( max {cTz} - T&) <0.15(\x - ¢* £).
T€P(A)

It is easy to show (sce. e.g. [3], Lemma (3.8)) that in the case of convex constraint
functions f, and a lincar objective function fy the following inequality holds in the
analytic center £(A) of P(A):

A-cTz(A) 2 %(,\ - A%,
(Only for ¢ > m in (2.1)). With the previous result this implies that
A=y > 9%330 - %)

from which the claim follows. ]
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3.2.13. Proof of Lemma 5

In the beginning of this chapter the condition number of a bounded konvex set M
has been defined. Under the assumptions of section 1, the set P = P(A = o0)
has a finite condition cond;(P) < oo. Since the program is also nondegenerate
there exists a Ag > A* (the unknown optimal value) such that P(Ag) is a simplex
S bounded by the ojective function fo(z) < Ao and the n linearly independent
constraints that are active in the optimum. Fur A € (A*, Ag] the set P()) is sim-
ilar to S and condz(P(A)) = condy(S). It is a simple exercise to verify that for
A > A* the condition cond;(P())) is a contiuous function of A. Since the limits
limjy o condz2(P(N)) = condz(P) and limy_x« condz(P())) = condz(S) are finite
one may conclude that there exits a number C < oo such that

conda(P(A)) < C for A€ (A%, 00).

Remark: In special cases it may happen that for some A € (A*,00) the condition
numbers are not monotone and condz(P())) > max{condz(P),cond,(S)} it seems
however that always cond;(P(A)) < condz(P) + condz(S) holds.

We recall the ellipsoidal approximation of the sets P(A) around the analytic
centers z(A) with the matrices H(z()),A) and ¥ = m ~ 1. (For the case of a Linear
Program [14] proved a better inclusion with similarity ratic (m — 1).)

Therefore conda( H(z(A),A)) < (m — 1)2C? =: C for A € (A*,0).
Now let a point y; lie in the domain of quadratic convergence of Newton’s method,
ie. & := ||h(yk, M)l Hyene) S 4—‘173» where 2(Ag) is the “nearest” center. From the

proof of (2.4) (and from Lemma 2) follows that the Hessian matrices in z(As) and
in yx + h(yk,Ak) fulfill

1
0.85Izll (=) e) S Nzl +huen i) < Gz llellEon

for any z € IR™. Similarly, the Hessian matrices in y, and in yx + h(yk, Ax) fulfill

the same relationship with the factors % resp. % (by Lemma 2). Putting this

together the eigenvaluc: of the Hessian matrices in yx and z(Ax) change at most
by a factor of 8§ € (g—%,%’) so that condy( H(yk, Ax)) < %)-;-condg(H(a:(/\k),/\k)) <
3conda( H(z(Ax), Ax)). This completes the proof of Lemma 5.
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